Proposition 10.39
If two straight lines incommensurable in square which make the sum of the squares on them rational, but the rectangle contained by them medial, be added together, the whole straight line is irrational : and let it be called
major.
If two straight lines incommensurable in square which make the sum of the squares on them rational, but the rectangle contained by them medial, be added together, the whole straight line is irrational : and let it be called
major.
For let two straight lines AB, BC incommensurable in square, and fulfilling the given conditions [X. 33 ], be added together; I say that AC is irrational.
For, since the rectangle AB, BC is medial, twice the rectangle AB, BC is also medial. [X. 6 and 23, Por.]
But the sum of the squares on AB, BC is rational; therefore twice the rectangle AB, BC is incommensurable with the sum of the squares on AB, BC, so that the squares on AB, BC together with twice the rectangle AB, BC that is, the square on AC, is also incommensurable with the sum of the squares on AB, BC; [X. 16 ] therefore the square on AC is irrational, so that AC is also irrational. [X. Def. 4 ]
And let it be called major. Q. E. D.