Proposition 10.48
To find the first binomial straight line.
To find the first binomial straight line.
To find the second binomial straight line.
To find the third binomial straight line.
To find the fourth binomial straight line.
To find the fifth binomial straight line.
To find the sixth binomial straight line.
If an area be contained by a rational straight line and the first binomial, the side
of the area is the irrational straight line which is called binomial.
If an area be contained by a rational straight line and the second binomial, the side
of the area is the irrational straight line which is called a first bimedial.
If an area be contained by a rational straight line and the third binomial, the side
of the area is the irrational straight line called a second bimedial.
If an area be contained by a rational straight line and the fourth binomial, the side
of the area is the irrational straight line called major.
If an area be contained by a rational straight line and the fifth binomial, the side
of the area is the irrational straight line called the side of a rational plus a medial area.
If an area be contained by a rational straight line and the sixth binomial, the side
of the area is the irrational straight line called the side of the sum of two medial areas.
The square on the binomial straight line applied to a rational straight line produces as breadth the first binomial.
The square on the first bimedial straight line applied to a rational straight line produces as breadth the second binomial.
The square on the second bimedial straight line applied to a rational straight line produces as breadth the third binomial.
The square on the major straight line applied to a rational straight line produces as breadth the fourth binomial.
The square on the side of a rational plus a medial area applied to a rational straight line produces as breadth the fifth binomial.
The square on the side of the sum of two medial areas applied to a rational straight line produces as breadth the sixth binomial.
A straight line commensurable in length with a binomial straight line is itself also binomial and the same in order.
A straight line commensurable in length with a bimedial straight line is itself also bimedial and the same in order.
A straight line commensurable with a major straight line is itself also major.
A straight line commensurable with the side of a rational plus a medial area is itself also the side of a rational plus a medial area.
A straight line commensurable with the side of the sum of two medial areas is the side of the sum of two medial areas.
If a rational and a medial area be added together, four irrational straight lines arise, namely a binomial or a first bimedial or a major or a side of a rational plus a medial area.
If two medial areas incommensurable with one another be added together, the remaining two irrational straight lines arise, namely either a second bimedial or a side of the sum of two medial areas.
If from a rational straight line there be subtracted a rational straight line commensurable with the whole in square only, the remainder is irrational; and let it be called
an apotome.
If from a medial straight line there be subtracted a medial straight line which is commensurable with the whole in square only, and which contains with the whole a rational rectangle, the remainder is irrational. And let it be called a
first apotome of a medial
straight line.
If from a medial straight line there be subtracted a medial straight line which is commensurable with the whole in square only, and which contains with the whole a medial rectangle, the remainder is irrational; and let it be called a
second apotome of a medial
straight line.
If from a straight line there be subtracted a straight line which is incommensurable in square with the whole and which with the whole makes the squares on them added together rational, but the rectangle contained by them medial, the remainder is irrational; and let it be called
minor.
If from a straight line there be subtracted a straight line which is incommensurable in square with the whole, and which with the whole makes the sum of the squares on them medial, but twice the rectangle contained by them rational, the remainder is irrational: and let it be called
that which produces with a rational area a medial whole.
If from a straight line there be subtracted a straight line which is incommensurable in square with the whole and which with the whole makes the sum of the squares on them medial, twice the rectangle contained by them medial, and further the squares on them incommensurable with twice the rectangle contained by them, the remainder is irrational; and let it be called
that which produces with a medial area a medial whole.
To an apotome only one rational straight line can be annexed which is commensurable with the whole in square only.
To a first apotome of a medial straight line only one medial straight line can be annexed which is commensurable with the whole in square only and which contains with the whole a rational rectangle.
To a second apotome of a medial straight line only one medial straight line can be annexed which is commensurable with the whole in square only and which contains with the whole a medial rectangle.
To a minor straight line only one straight line can be annexed which is incommensurable in square with the whole and which makes, with the whole, the sum of the squares on them rational but twice the rectangle contained by them medial.
To a straight line which produces with a rational area a medial whole only one straight line can be annexed which is incommensurable in square with the whole straight line and which with the whole straight line makes the sum of the squares on them medial, but twice the rectangle contained by them rational.
To a straight line which produces with a medial area a medial whole only one straight line can be annexed which is incommensurable in square with the whole straight line and which with the whole straight line makes the sum of the squares on them medial and twice the rectangle contained by them both medial and also incommensurable with the sum of the squares on them.